Plane integral drawings of planar graphs
نویسندگان
چکیده
A plane integral drawing of a planar graph G is a realization of G in the plane such that the vertices of G are mapped into distinct points and the edges of G are mapped into straight line segments of integer length which connect the corresponding vertices such that two edges have no inner point in common. We conjecture that plane integral drawings exist for all planar graphs, and we give parts of a proof of this conjecture.
منابع مشابه
Drawing some 4-regular planar graphs with integer edge lengths
A classic result of Fáry states that every planar graph can be drawn in the plane without crossings using only straight line segments. Harborth et al. conjecture that every planar graph has such a drawing where every edge length is integral. Biedl proves that every planar graph of maximum degree 4 that is not 4-regular has such a straight-line embedding, but the techniques are insufficient for ...
متن کاملReally Straight Graph Drawings
We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes, and that every cubic 3-connected plane graph has a plane drawing with ...
متن کاملComplexity of Finding Non-Planar Rectilinear Drawings of Graphs
Monotone Drawings of Graphs p. 13 Upward Geometric Graph Embeddings into Point Sets p. 25 On a Tree and a Path with No Geometric Simultaneous Embedding p. 38 Difference Map Readability for Dynamic Graphs p. 50 Maximizing the Total Resolution of Graphs p. 62 Plane Drawings of Queue and Deque Graphs p. 68 An Experimental Evaluation of Multilevel Layout Methods p. 80 Orthogonal Graph Drawing with ...
متن کاملGraph Drawings with One Bend and Few Slopes
We consider drawings of graphs in the plane in which edges are represented by polygonal paths with at most one bend and the number of different slopes used by all segments of these paths is small. We prove that d 2 e edge slopes suffice for outerplanar drawings of outerplanar graphs with maximum degree ∆ > 3. This matches the obvious lower bound. We also show that d 2 e + 1 edge slopes suffice ...
متن کاملPlanar Polyline Drawings with Good Angular Resolution
We present a linear time algorithm that constructs a planar polyline grid drawing of any plane graph with n vertices and maximum degree d on a (2n ? 5) (3 2 n ? 7 2) grid with at most 5n ? 15 bends and minimum angle > 2 d. In the constructed drawings, every edge has at most three bends and length O(n). To our best knowledge, this algorithm achieves the best simultaneous bounds concerning the gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2001